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Abstract

The two damage parameters needed to describe isotropic damage are shown to de_ne a damage domain
and the evolution of damage is de_ned by a path within that domain[ Physical limitations on the path to
full damage are developed[ A thermodynamically consistent set of constitutive equations with which the
damage path can be evaluated is developed for a speci_c material[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

In Cauvin and Testa "0886# we have shown that in the most general case\ damage that causes
sti}ness degradation can be described by an eighth!order tensor D7[ If the principle of strain
equivalence is imposed "Lema(¼tre and Chaboche\ 0889# a tensor of order four\ D\ is all that is
needed to relate damaged and undamaged moduli\

E	ijkl �"Iijmn−Dijmn#Emnkl "0[0#

with

Iijmn � 0
1
"dimdjn¦dindjm# "0[1#

In the special case of isotropic damage that takes an isotropic undamaged material to an isotropic
damaged state\ only two elements of the damage tensor D are independent so that

Dijkl � D1dijdkl¦
0
1
"D0−D1#"dikdjl¦dildjk# "0[2#

In Cauvin and Testa "0886# we have also expressed isotropic damage in terms of physically
meaningful damage parameters "DE\ DS\ DK\ Dn [ [ [# that act directly on the familiar moduli
"E\ m\ K\ n [ [ [#[

� Corresponding author[ Fax ] 1017435156[
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1[ The damage domain

Because there are two scalar damage variables\ one can think of a two!dimensional damage
space in which the evolution of damage follows some path in "D0\ D1#[ This will be limited by the
obvious restrictions on the physical sti}nesses K	 and m½ [ Therefore\

"9 ¾ K	 ¾ K\ 9 ¾ DK ¾ 0#c 9 ¾ D0¦1D1 ¾ 0 "1[0#

"9 ¾ m½ ¾ m\ 9 ¾ DS ¾ 0#c 9 ¾ D0−D1 ¾ 0 "1[1#

which de_ne the damage domain shown in Fig[ 0 in the space D0\ D1[
For isotropic damage\ the evolution of D0 and D1 must be such that the damage state remains

inside the damage domain which can be restated from eqns "1[0# and "1[1# as ]

9 ¾ D0 ¾ 0 "1[2#

−0
2
¾ D1 ¾ 0

2
"1[3#

The portion of this domain corresponding to negative values of n½ may be excluded from consider!
ation[ Therefore\ the boundary of the damage domain may be shifted to the line representing n½ � 9
which gives the damage domain OABC in Fig[ 0 and leads to the limit

−
0
2

¾ D1 ¾
n

0¦n
"1[4#

Within this damage domain\ it may also be veri_ed that the other physically signi_cant damaged
material constants satisfy the following expected limits ]

9 ¾ E	 ¾ E "1[5#

Fig[ 0[ Damage domain and damage path[
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9 ¾ n½ ¾ 0
1

"1[6#

2[ Full damage condition

Because the two scalar isotropic damage parameters D0 and D1 do not have simple physical
meanings\ the values that will occur at full damage at a point in the material are not readily
apparent[ This is so\ despite the limits on these parameters\ eqns "1[2# and "1[4#\ which de_ne the
damage domain[ In other words\ in the damage domain of Fig[ 0\ it is not obvious where full
damage occurs[

On the other hand\ one can see on physical grounds that full damage must have occurred at a
point in the material if it has fully lost any one of the sti}nesses\ E\ m\ or K[ Full damage at a point
in the material corresponds\ therefore\ to any one of the following ]

DE � 0\ DS � 0\ DK � 0 "2[0#

In the present work we do not account for possible critical values of damage that precipitate failure
before complete loss of sti}ness is reached[

3[ Damage paths

Whatever the progression of damage\ it will be represented by some path in the space of D0D1[
Any limitations on the nature of that path must come from thermodynamics and speci_c material
limits[ It is known\ however\ that the path begins at D0 � D1 � 9\ is fully contained in the damage
domain of Fig[ 0 that assures non!negative moduli\ and it must terminate at the condition of full
damage[ Full damage according to eqn "2[0# occurs only at point B of the damage domain and\
therefore\ all damage paths tend toward that point[ The degenerate case along the path CB of Fig[
0 may also represent full damage as discussed below[

The expression for n½ as given in Cauvin and Testa "0886# can be seen to represent a straight line
in the damage domain whenever the damaged Poisson|s ratio n½ remains constant\ Fig[ 1[ These are
damage paths with constant Poisson|s ratio[

It is noted that Poisson|s ratio decreases from the undamaged state "n½ ³ n# when the damage
parameter D1 is positive and increases "n½ × n# when D1 is negative[ If D1 remains zero throughout
the damage process\ then Poisson|s ratio remains unchanged "n½ � n# which is\ thus\ an immutable
consequence of using only one damage parameter to describe isotropic damage[ Nevertheless\ it is
seen that even in that case\ the terminus for full damage is the point B in Fig[ 0 as it would be for
any other damage path[ Usually it will be found that n½ decreases with damage\ but the possibility
of increasing n½ appears to be borne out by Budiansky and O|Connell "0865#[ A path on the
boundary AB represents damage progressing with n½ � 9 and

D1 � n"0−D0# "3[0#

A path on the boundary OA\ where D0 � D1 implies no change in the shear modulus "m½ � m#\
whereas on OC\ it is K that remains una}ected by damage[ A peculiar case occurs on BC where
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Fig[ 1[ Lines of constant Poisson|s ratio[

D1 � −"0−D0# "3[1#

For points on this boundary of the damage domain we _nd

n½ � 0
1

"3[2#

l½ �
E

0−1n
"0−D0# "3[3#

m½ � E	 � 9 "3[4#

K	 �
E

0−1n
"0−D0# "3[5#

The damaged material in this state is no longer capable of sustaining shear or uniaxial stresses
"E	 � m½ � 9# but can sustain a hydrostatic stress "K	 � 9#[ In this sense\ it is technically not fully
damaged but can act as an inviscid ~uid[

Clearly\ it is only for special damage paths that the damage description is reduced to only one
parameter\ i[e[ the often encountered "0−D# characterization of damage "Lema(¼tre and Chaboche\
0889#[ For example\ the case with D1 � 9 that is often considered corresponds to constant Poisson|s
ratio\ n½ � n\ and gives damaged parameters l½\ m½ \ E	 and K	 that are simply "0−D0# times the
undamaged values[

In general\ however\ for isotropic damage the physical moduli are more complicated functions
of the two damage parameters D0 and D1\ as detailed in Cauvin and Testa "0886#[ From these
results\ D0 and D1 can be evaluated from measurements of the physical moduli using

D0 � 0−
E	ð0−n½"0¦1n#Ł

E"0¦n½#"0−1n½#"n−n½#
"3[6#
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D1 �
E	

E"0¦n½#"0−1n½#
"3[7#

The measurement of Young|s modulus and Poisson|s ratio in an isotropically damaged material
permits evaluation of the two independent damage variables[

The determination of the path along which the damage progresses in the damage space D0D1

requires development of constitutive equations for the material[ Because the kinetics are not
unlike those of plasticity\ and because it is likely that in many applications damage will also be
accompanied by plastic deformation\ they are considered together in the ensuing development[

Isotropic damage models currently found in the literature may all be classi_ed as the "0−D#
type for which the degradation of the mechanical properties of materials is assumed to be entirely
described by a single parameter "Lema(¼tre and Chaboche\ 0889#[ The limitations of such an
assumption have yet to be fully determined\ but clearly it will at least lead to some inconsistencies
when the actual damage path does not satisfy the condition of constant n which a single damage
parameter implies[

In the following we develop within the framework of the thermodynamics of irreversible pro!
cesses an isotropic damage model based on the tensor D with two independent parameters for a
material in which deviations from linear elasticity occur as a result of both damage and plasticity[
However\ the material is time!independent and su}ers only small deformations[

4[ Damage operator

It is convenient to work with the inverse of the tensor in eqn "0[0#\ to be called the damage
operator and denoted by L\

Lijkl �"Iijkl−Dijkl#−0 "4[0#

Using the damage tensor Dijkl for isotropic damage as given by eqn "0[2# we can show that

Lijkl �
1D1dijdkl¦"0−D0−1D1#"dikdjl¦dildjk#

1"0−D0¦D1#"0−D0−1D1#
"4[1#

The e}ective stress tensor can then be written as

s½ ij � Lijklskl "4[2#

The familiar relation of the so!called "0−D# type of isotropic damage can be easily recovered by
setting D1 � 9 in eqns "4[1# and "4[2# becomes in this case

s½ ij �
sij

0−D0

"4[3#

5[ Thermodynamics variables

The state potential from which the state laws are derived is taken as the Helmholtz free energy
in the form "Lema(¼tre and Chaboche\ 0889 ^ Lubliner\ 0889#
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c � ce¦cp "5[0#

where ce and cp denote\ respectively\ the elastic part and the plastic part of the free energy[ As
usual\ this is a speci_c energy expressed per unit mass[

The total strain may also be decomposed into the elastic and plastic strains

o � oe¦op "5[1#

Damage in the present context is directly associated with elastic processes and therefore\ we may
write

ce � ce"oe\ D\ T# "5[2#

where T is the absolute temperature[ The thermodynamic variables corresponding to the elastic
strain tensor oe and the damage tensor D are "using r as the mass density#

sij � r
1ce

1oe
ij

"5[3#

YÞijkl � r
1ce

1Dijkl

"5[4#

The latter turns out to have the same physical signi_cance as the strain energy release rate of
fracture mechanics but applicable here to damage at the mesoscale[

For isothermal processes\ the elastic part of the free energy is given in terms of the elastic part
of the strain as

ce �
0
1r

E	mnrso
e
mno

e
rs "5[5#

Or\ using eqn "0[0#

ce �
0
1r

"Imnpq−Dmnpq#Epqrso
e
mno

e
rs "5[6#

Therefore\ the stress tensor s\ eqn "5[3#\ may be shown to be "see Fig[ 2#

sij �"Iijpq−Dijpq#Epqmno
e
mn "5[7#

from which

oe
ij � CijmnLmnklskl "5[8#

where C is the compliance tensor of the virgin material[
The thermodynamic conjugate of D\ eqn "5[4#\ becomes

Fig[ 2[ Stress tensors[
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YÞijkl � −0
1
Eklrso

e
ijo

e
rs � −Yijkl "5[09#

where we have de_ned the more convenient Y as the negative of YÞ[
The plastic part c9

p of the free energy of the undamaged "hence superscript 9# material will be
taken in the form

c9
p � c9

p "r\ a\ T# "5[00#

where a is the back strain tensor to account for kinematic hardening "Chaboche\ 0866# and r is
the equivalent plastic strain de_ned in terms of increments or rates "Odqvist\ 0822# as

r¾ �"1
2
o¾p9
ij o¾

p9
ij #0:1 "5[01#

where op9
ij is the plastic strain in the undamaged material when it is deformed to the same elastic

strain or equivalently when it is subjected to the e}ective stress s½ [ In this form\ r¾ is just equal to
=o¾p9 = if a specimen of the undamaged material is subjected to a uniaxial tension or compression[

The thermodynamic variables corresponding to r and a may be written

R � r
1c9

p

1r
"5[02#

XD
ij � r

1c9
p

1aij

"5[03#

Here\ R is identi_ed as the isotropic strain hardening variable and XD the deviatoric back stress
tensor "Lema(¼tre and Chaboche\ 0889 ^ Lubliner\ 0889#[

6[ Strain energy density

The strain energy density is de_ned by its increment

dwe � sij doe
ij "6[0#

in which the elastic strain is the value in the damaged condition and contains both strains due to
the initial ~exibility and added strain due to damage[ At any damage state the stress is linearly
related to the total elastic strain and eqn "6[0# may be integrated to obtain

we � Ðsij doe
ij �

0
1
sijo

e
ij "6[1#

Introducing eqn "5[7#\ the strain energy density at constant damage becomes

we � 0
1
"Iijmn−Dijmn#Emnklo

e
klo

e
ij "6[2#

or\ using eqn "5[09#

we � Yijmn"Iijmn−Dijmn# "6[3#

If one considers an increment in damage dDijkl at constant stress or strain from some damage state\
then the respective increments in strain energy would be
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dwe =s � 0
1
skl doe

kl ^ dskl � 9 "6[4#

dwe =oe �
0
1
oe
kl dskl ^ doe

kl � 9 "6[5#

From eqn "5[7#\ with dsij � 9\ we _nd

"Iijmn−Dijmn#Emnkl doe
kl � dDijmnEmnklo

e
kl "6[6#

Since E	ijkl � E	klij eqn "6[6# can be written

"Iklmn−Dklmn#Emnij doe
kl � dDijmnEmnklo

e
kl "6[7#

If eqn "5[7# is used to replace skl in eqn "6[4# then eqn "6[7# will permit reduction to the form

dwe =s � 0
1
dDijmnEmnklo

e
klo

e
ij "6[8#

Similarly\ if we use again eqn "5[7#\ but with doe
ij � 9\ we obtain

dsij � −dDijmnEmnklo
e
kl "6[09#

which substituted into eqn "6[5# gives

dwe =oe � −0
1
dDijmnEmnklo

e
klo

e
ij "6[00#

The strain energy increments in eqns "6[8# and "6[00# can be restated by using eqn "5[09# in the
form

dwe =s � Yijmn dDijmn "6[01#

dwe =oe � −Yijmn dDijmn "6[02#

We see from these that Yijkl plays the same role as the strain energy release rate of fracture
mechanics[ It is\ therefore\ the damage strain energy release rate and in both cases in eqns "6[01#
and "6[02# represents the increment in dissipation for a unit increment in damage "Figs 3 and 4#[

Fig[ 3[ Damage at constant stress[
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Fig[ 4[ Damage at constant strain[

7[ The damage dissipation inequality

A thermodynamically admissible process "Coleman and Gurtin\ 0856 ^ Eringen\ 0879# must obey
the Second Law of Thermodynamics[ Accordingly\ we now seek the restrictions that this postulate
places on the damage and its evolution[

The local ClausiusÐDuhem inequality expresses the second law and in the present application
has the form

sijo¾ij−r"c¾¦hTþ#−qi

T\i
T

− 9 "7[0#

where h is the speci_c entropy and q the heat ~ux vector[
The Helmholtz free energy is now expressed as

c � c"oe\ T\ r\ a\ D# "7[1#

Therefore\

c¾ �
1c

1oe
ij

o¾e
ij¦

1c

1T
Tþ¦

1c

1r
r¾¦

1c

1aij

a¾ ij¦
1c

1Dijkl

Dþijkl "7[2#

and substitution into "7[0# gives eqn "7[3#

0sij−r
1c

1oe
ij1 o¾e

ij¦sijo¾
p
ij−r 0

1c

1T
¦h1Tþ−r

1c

1r
r¾−r

1c

1aij

a¾ ij−r
1c

1Dijkl

Dþijkl−qi

T\i
T

− 9 "7[3#

Since the entropy is given by

h � −
1c

1T
"7[4#

eqn "7[3# becomes

sijo¾
p
ij−Rr¾−XD

ij a¾ ij¦YijklDþijkl−qi

T\i
T

− 9 "7[5#

If the mechanical and thermal dissipations are not coupled\ then
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sijo¾
p
ij−Rr¾−XD

ij a¾ ij¦YijklDþijkl − 9 "7[6#

and

−qi

T\i
T

− 9 "7[7#

Because plastic ~ow can occur without damage and vice versa\ eqn "7[6# can be further separated
into

sijo¾
p
ij−Rr¾−XD

ij a¾ ij − 9 "7[8#

YijklDþijklij − 9 "7[09#

The _rst of these is the well known condition on the work in plastic deformation and the second\
using "6[01# and "6[02#\ speci_es the condition of irreversibility of damage as the dissipation
inequalities

dwe =s � Yijkl dDijkl − 9 "7[00#

dwe =oe � −Yijkl dDijkl ¾ 9 "7[01#

8[ The irreversibility condition

In terms of the isotropic damage parameters\ the damage rate from eqn "0[2# is

Dþijkl � Dþ1dijdkl¦
0
1
"Dþ0−Dþ1#"dikdjl¦dildjk# "8[0#

and the dissipation inequality "7[09# becomes

YijklDþijkl � Dþ1Yiijj¦"Dþ0−Dþ1#Yijij − 9 "8[1#

This is the restriction on any damage path within the damage domain of Fig[ 0[ This limitation of
non!negative damage dissipation can be restated and interpreted more simply for damage paths in
Fig[ 0[ We note _rst the following ]

Using eqn "5[09#

Yijij �
0
1
Eijklo

e
klo

e
ij "8[2#

or

Yijij �
En

1"0−1n#"0¦n#
"oe

ii#1¦
E

1"0¦n#
"oe1

00¦oe1

11¦oe1

22¦1oe1

01¦1oe1

02¦1oe1

12# "8[3#

and

Yiijj �
0
1

Ejjklo
e
klo

e
ii �

E
1"0−1n#

"oe
ii#1 �

2
1

K"oe
ii#1 "8[4#

eqn "8[2# is recognized as the strain energy of the virgin material "w9
e # under the deformation

present in the damaged material so that
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Yijij �
0
1
s½ ijo

e
ij � w9

e "8[5#

Furthermore\ in the form of eqn "8[4# is recognized the expression for the strain energy of
volumetric deformation in the virgin material "w9

H# because by de_nition

0
2
s½ jj � Koe

jj "8[6#

and

w9
H � 0

1
"0
2
s½ jj#oe

ii �
0
1
K"oe

ii#1 "8[7#

Therefore from eqn "8[4#

Yiijj � 2w9
H "8[8#

The expression "8[5# can also be rewritten in terms of hydrostatic and distortional "W9
D# strain

energies in the virgin material using the general result

w9
e � w9

H¦w9
D "8[09#

The law of non!negative damage dissipation eqn "8[1# can then be written using eqns "8[5#\ "8[8#
and "8[09# in the form

YijklDþijkl � w9
H"Dþ0¦1Dþ1#¦w9

D"Dþ0−Dþ1# − 9 "8[00#

When expressed in terms of the physically signi_cant damage parameters relating to bulk and
shear responses\ one obtains the physically meaningful form of irreversibility of damage

YijklDþijkl � w9
HDþK¦w9

DDþS − 9 "8[01#

The various forms of the condition on damage dissipation\ eqns "8[1#\ "8[00#\ "8[01#\ regulate the
evolution of damage along any possible path in the damage domain of Fig[ 0[ We may observe the
impact of this limitation on several speci_c paths previously identi_ed in Fig[ 0[

0[ On OA de_ned by Dþ0 � Dþ1 "and DþS � 9# eqn "8[1# shows that the damage can only progress
from O to A for which

Dþ0 � Dþ1 − 9 "8[02#

We see from eqn "8[01# that under such restrictions\ DþK − 9 which is the physically recognizable
limitation on damage evolution[

1[ On AB for which we _nd D1 � n"0−D0# and Dþ1 � −nDþ0\ eqn "8[1# becomes

YijklDþijkl � Dþ0 ð"0¦n#Yijij−nYiijjŁ − 9 "8[03#

eqns "8[03#\ "8[3# and "8[4# show that the damage must proceed with Dþ0 − 9 and Dþ1 ¾ 9 which
means that the path can only go from A toward B[

2[ On OC for which D0¦1D1 � 9\ the damage dissipation inequality "8[1# shows that the
damage can only progress from O to C with Dþ0 − 9 and Dþ1 ¾ 9[

3[ On CB for which D1 � −"0−D0# and Dþ0 � Dþ1\ eqn "8[1# shows that the damage path can
only go from CÐB with Dþ0 − 9 and Dþ1 − 9[
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4[ For the so!called "0−D# type of isotropic damage which corresponds to the damage path
OB we have D1 � 9[ Equation "8[1# shows that the damage must proceed from O to B with Dþ0 − 9[

09[ The dissipation potential

The concept of a generalized potential has been introduced by Moreau "0869# and Rice "0869\
0860# to de_ne the rate equations for the internal variables of the dissipation process[ The kinetic
constitutive equations will describe here the evolution of damage as well as the plastic strains[ We
shall postulate a potential of dissipation\ F\ written as a function of the stress variables ]

F � F"s\ R\ XD\ YÞ# "09[0#

According to the hypothesis of generalized normality and the description of rate!independent
plasticity "Lubliner\ 0889#\ the evolution or rates of plastic strains and damage are found from F
with a positive scalar multiplier lþ]

o¾P
ij �

1F
1sij

l¾ "09[1#

r¾ � −
1F
1R

l¾ "09[2#

a¾ ij � −
1F

1XD
ij

l¾ "09[3#

Dþijkl � −
1F

1YÞijkl

l¾ "09[4#

We shall further postulate that the dissipations from damage and plasticity contribute inde!
pendently to the total potential in the form

F � FP"s\ R\ XD#¦FD"YÞ# "09[5#

where FP is a plastic potential and FD a damage potential dependent on the thermodynamic
conjugate of the damage alone[ Then\ using eqns "09[1#Ð"09[4#\ the damage evolution law will be
determined by the selection of FD just as the kinetic law of plastic ~ow comes from FP[

If sy is the yield stress of the material in its virgin state\ yielding in the damaged material will
occur under uniaxial stress when

s½ � sy "09[6#

This might be generalized to three dimensions using the equivalent stress concept for the e}ective
stress

s½ eq �"2
1
s½D

ij s½
D
ij #0:1 � sy "09[7#

One may account for kinematic and isotropic hardening by expressing the yield function for such
a material in the form
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f �"s½D−XD#eq−R−sy "09[8#

where

"s½D−XD#eq � ð2
1
"s½D

ij −XD
ij #"s½D

ij −XD
ij #Ł0:1 "09[09#

In the case of an associated ~ow rule for the plastic deformations\ f in eqn "09[8# is taken as the
potential function FP\ and by virtue of the e}ective stress tensor s½ used in this potential\ it will
include also plastic deformation induced by the damage[ Non!associated ~ow rules could also be
considered in this way by taking a plastic potential FP other than the yield function f "e[g[ Lema(¼tre
and Chaboche\ 0889#

FP � f¦
2

3X�

XD
ij X

D
ij "09[00#

where the additional expression accounts for non!linear kinematic hardening and X� is a material
parameter[ We shall use this form in the subsequent derivations[

If the dissipation potential for the damage is written as a function of Y rather than YÞ\ eqns
"09[5# and "09[4# give the damage evolution equation

Dþijkl � −
1F

1YÞijkl

l¾ �
1FD

1Yijkl

l¾ "09[01#

The potential function FD cannot be chosen arbitrarily\ however\ We note for example that eqn
"8[0#\ with i � j\ requires that

Dþ "ijij# �
0
1
"Dþ0−Dþ1# � 0

1
"Dþ "iiii#−Dþ "iijj## "09[02#

with no summation on indices within parentheses[ Therefore\ we see that FD must be such that

1FD

1Y"ijij#

�
0
1 0

1FD

1Y"iiii#

−
1FD

1Y"iijj#1 "09[03#

Aside from satisfying this constraint\ the potential FD is chosen to reproduce observed damage
evolution[ Several simple choices of FD are explored in the following[

0[ One parameter damage
If S is a material constant\ then

FD"Y# �
YmnmnYpqqp

1S
"09[04#

gives a damage evolution rule

Dþijkl �
Ymnmn

1S
"dikdjl¦dildjk#l¾ "09[05#

which leads to the following ]

Dþ "iiii# � Dþ0 �
Ymnmn

S
l¾ �

w9
e

S
l¾ "09[06#
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Dþ "iijj# � Dþ1 � 9 "09[07#

Dþ "ijij# �
0
1

Dþ0 �
Ymnmn

1S
l¾ �

w9
e

1S
l¾ "09[08#

In other words\ this choice of FD gives Dþ1 � 9 and would correspond to the so!called "0−D# type
of isotropic damage\ i[e[ the one parameter description of damage[ This is damage path OB in Fig[
0[

1[ For the potential

FD"Y# �
YmmnnYppqq

1S
"09[19#

eqn "09[01# gives

Dþijkl �
Ymmnn

S
dijdkll¾ "09[10#

from which we _nd

Dþ "iiii# � Dþ0 �
Ymmnn

S
l¾ �

2w9
H

S
l¾ "09[11#

Dþ "iijj# � Dþ1 �
2w9

H

S
l¾ "09[12#

Dþ "ijij# � 9 "09[13#

This FD corresponds to damage evolution along path OA in Fig[ 0 with Dþ0 � Dþ1[ This potential
appears to be rather restrictive because it indicates that damage will only occur if there is non zero
volumetric deformation[ Indeed\ in the case where w9

H � 9\ i[e[ s½ kk � 9\ we would always have
Dþ0 � Dþ1 � 9 which would imply no damage under a purely distortional deformation[

2[ Selection of FD in the form

FD"Y# �
YppqqYmnmn

S
"09[14#

gives

Dþijkl �
0
1S

ðYppqq"dikdjl¦dildjk#¦1YmnmndijdklŁl¾ "09[15#

from which

Dþ "iiii# � Dþ0 �
Yppqq¦Ymnmn

S
l¾ �

2w9
H¦w9

e

S
l¾ "09[16#

Dþ "iijj# � Dþ1 �
Ymnmn

S
l¾ �

w9
e

S
l¾ "09[17#
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Dþ "ijij# �
0
1
"Dþ0−Dþ1# �

2w9
H

1S
l¾ "09[18#

In this case\ and in the potentials FD explored above\ the damage variables D0 and D1 always
increase if S is positive[ However\ we have already seen that the dissipation inequality\ eqn "8[3#\
allows a decreasing D1 within the damage domain[

Although the best choice of the dissipation potential for a given material remains to be deter!
mined and certainly must depend on the type of the material\ we propose a function that can
satisfy the general restrictions of isotropy and still permit the latitude given by the dissipation
inequality ]

FD �
0
1S

"YmnmnYpqpq2
0
2
YmmnnYppqq# "09[29#

The damage ~ow rule becomes

Dþijkl � $
w9

e

1S
"dikdjl¦dildjk#2

w9
H

S
dijdkl% l¾ "09[20#

which gives individual damage rates

Dþ "iiii# � Dþ0 �
w9

e 2w9
H

S
l¾ "09[21#

Dþ "iijj# � Dþ1 � 2
w9

H

S
l¾ "09[22#

Dþ "ijij# �
0
1
"Dþ0−Dþ1# �

w9
e

1S
l¾ "09[23#

00[ The kinetic constitutive equations

Using the potentials outlined in the preceding for FD and FP in the generalized potential F\ eqn
"09[5#\ we can develop the constitutive equations for an elastic:plastic material with isotropic
damage[ This is accomplished by evaluating the four rates of eqns "09[1#Ð"09[4# using these
potentials[ The damage rate of eqn "09[4# is already evaluated from the potential FD as given by
eqn "09[20#[ We proceed next to evaluate the plastic strain rate in eqn "09[1#[

We note _rst that the deviatoric e}ective stress

s½D
ij � s½ ij−

0
2
s½ kkdij "00[0#

can be written using eqn "4[2# as

s½D
ij �"Lijmn−

0
2
Lkkmndij#smn "00[1#

Using eqn "09[00# in eqns "09[5# and "09[1#\ the plastic strain rate tensor for the damaged material
is
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o¾P
rs �

1FP

1srs

l¾ �
1f

1srs

l¾ �
1

1srs

"s½D−XD#eql¾ "00[2#

From eqn "09[09# we _nd

1

1srs

"s½D−XD#eq �
2
1

"s½D
ij −XD

ij #

"s½D−XD#eq

1s½D
ij

1srs

"00[3#

and from "00[1#

1s½D
ij

1srs

� Lijrs−
0
2

Lkkrsdij "00[4#

These latter two equations substituted back into eqn "00[2# give the kinetic equation for the plastic
strain rate

o¾P
rs �

2
1

"s½D
ij −XD

ij #

"s½D−XD#eq

Lijrsl¾ "00[5#

It is common to compute an equivalent plastic strain rate\ often called the accumulated plastic
strain rate p¾ in the damaged material by the de_nition

p¾ �"1
2
o¾P
ijo¾

P
ij#0:1 "00[6#

This can be written in terms of the e}ective stresses upon substitution into eqn "00[5# to give

p¾ �
0

"s½D−XD#eq $
2
1
"s½D

ij −XD
ij #"s½D

kl−XD
kl#LijrsLklrs%

0:1

l¾ "00[7#

A much simpler form can be obtained by using eqn "4[1# and eqn "09[09# in eqn "00[7# to express
p¾ in terms of the parameters D0 and D1 of isotropic damage or the shear damage parameter DS ]

p¾ �
0

"0−D0¦D1#
l¾ �

0
"0−DS#

l¾ "00[8#

The plastic strain rate tensor in the undamaged material when it is deformed to the same elastic
strain tensor is found from eqn "09[00#

o¾P9
rs �

1FP

1s½ rs

l¾ �
1f

1s½ rs

l¾ �
1f
1sij

1sij

1s½ rs

l¾ �
2
1

"s½D
rs−XD

rs#

"s½D−XD#eq

l¾ "00[09#

From this and using eqn "00[8#\ it is seen that the plastic strain rates in the damaged material and
the undamaged material are related simply by

o¾P
rs � o¾P9

ij Lijrs "00[00#

or conversely\

o¾P9
rs � o¾P

ijL−0
ijrs � o¾P

ij "Iijrs−Dijrs# "00[01#

The accumulated plastic strain rate r¾ in the undamaged material was de_ned by eqn "5[01# and
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is the counterpart of p¾ for the undamaged material[ It is found as the second kinetic equation\ eqn
"09[2#[ Using eqns "09[5# and "09[00#

r¾ � l¾ "00[02#

This same result would be obtained if the strain rates eqn "00[09# are substituted into the de_nition
of r¾\ eqn "5[01#[

For the so!called "0−D# type of isotropic damage for which

Lijrs �
0

"0−D#
Iijrs "00[03#

we _nd from eqn "00[7# and eqn "00[02# that

r¾ � p¾ "0−D# "00[04#

When there is no damage\ D � 9\ the damage operator L reduces to the identity tensor I\ and
we _nd from eqns "00[7# and "00[02#

p¾ � r¾ � l¾ for D � 9 "00[05#

The same is seen for the "0−D# description\ eqn "00[04#[
The third kinetic equation\ eqn "09[3#\ gives the back strain rate tensor for the undamaged

material using eqns "09[5# and "09[00# ]

a¾rs � −
1FP

1XD
rs

l¾ � −$
1f

1XD
rs

¦
2

1X�

XD
rs% l¾ "00[06#

From eqn "09[8#\

1f

1XD
rs

� −
2
1

"s½D
rs−XD

rs#

"s½D−XD#eq

"00[07#

which together with eqn "00[01# can be substituted into eqn "00[06# to give the back strain rate
tensor

a¾rs � o¾P
ijL−0

ijrs −
2

1X�

XD
rsl¾ "00[08#

or

a¾rs � o¾p9
rs −

2
1X�

XD
rsl¾ "00[19#

01[ The stress variables XD and R

We have obtained in the preceding the four kinetic constitutive eqns "09[20#\ "00[5#\ "00[02#\
"00[19# from the selected potential functions FD and FP of eqns "09[00# and "09[29#[ In these ~ow
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rules\ the back stress tensor XD and the isotropic hardening variable R for the undamaged material
remain to be determined[

The back stress tensor depends on the plastic properties of the material[ A relation often used
is

XD
rs �

1
2
X�gars "01[0#

where g is a characteristic coe.cient of the material "Lema(¼tre and Chaboche\ 0889#[ For such a
choice\ eqn "00[08# gives a value of the back stress rate tensor

XþD
rs � gð1

2
X�o¾P

ijL−0
ijrs −XD

rsl¾Ł "01[1#

which can also be written\ using eqn "00[01#\

XþD
rs � gð1

2
X�o¾P9

rs −XD
rsl¾Ł "01[2#

This last equation\ familiar in plasticity\ is a modi_cation of the MelanÐPrager model with an
additional term on the right!hand side that represents {fading strain memory| "Il|iushin\ 0843#\ and
allows a better description of the Bauschinger e}ect "Lubliner\ 0889#[

Substituting eqn "00[09# into eqn "01[2#\ the rate equation of the back stress tensor in terms of
the e}ective stresses is

XþD
rs � g $X�

"s½D
rs−XD

rs#

"s½D−XD#eq

−XD
rs% l¾ "01[3#

The isotropic hardening R\ eqn "5[02#\ which is identi_ed as the thermodynamic variable
corresponding to the accumulated plastic strain r for the undamaged material\ increases non!
linearly with the plastic strain and tends to some limiting value R�\ as observed in various cyclic
tests "Amar and Dufailly\ 0882#[ It is often taken in the form

R � R� ð0−exp"−br#Ł "01[4#

where b is a material parameter[ For such a choice\ the rate equation\ using eqn "00[02#\ becomes

Rþ � b"R�−R#l¾ "01[5#

02[ The plastic multiplier

The multiplier l¾ is found by requiring consistency with the yield condition[ The plastic ~ow
occurs\ as given by eqn "00[2# and eqn "00[09#\ when the material is at yield and remains at yield\
i[e[ f � 9 and f¾� 9[ Therefore\ using eqn "09[8#

f¾�
1f

1srs

s¾ rs¦
1f

1XD
rs

XþD
rs¦

1f
1Dpqrs

Dþpqrs¦
1f
1R

Rþ � 9 "02[0#

where it can be shown that
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1f
1Dpqrs

�
2
3

"s½D
ij −XD

ij #

"s½D−XD#eq

"Lijpqs½
D
rs¦Lijrss½

D
pq# "02[1#

Using eqns "00[3#\ "00[07#\ "02[1# in eqn "02[0# and noting that "1f:1R# � −0 we _nd ] eqn "02[2#

2
1

"s½D
ij −XD

ij #

"s½D−XD#eq

Lijrss¾ rs−
2
1

"s½D
rs−XD

rs#

"s½D−XD#eq

XþD
rs¦

2
3

"s½D
ij −XD

ij #

"s½D−XD#eq

"Lijpqs½
D
rs¦Lijrss½

D
pq#Dþpqrs−Rþ � 9

"02[2#

Finally\ substituting eqn "01[3# and eqn "01[5# into eqn "02[2#\ we obtain

l¾ �

2
1

"s½D
ij −XD

ij #

"s½D−XD#eq

Lijrss¾ rs

gX�¦b"R�−R#−
2
1

"s½D
ij −XD

ij #

"s½D−XD#eq $gX
D
ij ¦

0
1

"Lijpqs½
D
rs¦Lijrss½

D
pq#

1FD

1Ypqrs%
"02[3#

The basic variables and equations that are used in a solution for an elastoplastic material\
initially isotropic and sustaining isotropic damage\ are ] "a# the damage operator L\ eqn "4[1# ^ "b#
the strain tensor o\ eqn "5[1# ^ "c# the elastic strain tensor oe\ eqn "5[8# ^ "d# the plastic strain
increment o¾p\ eqn "00[5# ^ "e# the accumulated plastic strain rate p¾\ eqn "00[7# ^ " f# the back stress
rate tensor XþD\ eqn "01[3# ^ "g# the isotropic hardening rate Rþ\ eqn "01[5# ^ "h# the plastic multiplier
l¾\ eqn "02[3# ^ "i# and the damage evolution equations\ eqn "09[20#[ Five material parameters are
needed ] S in eqn "09[20# ^ X� and g in eqn "01[3# ^ R� and b in eqn "01[5#[

The detailed equations given in the preceding development are limited by the speci_c choices of
the following assumed forms ]

"a# the dissipation potential that de_nes damage evolution\ eqn "09[29#
"b# the plastic potential "Mises#\ eqns "09[8# and "09[00#
"c# the back stress tensor\ eqn "01[0#
"d# the isotropic hardening parameter\ eqn "01[4#[

03[ Conclusion

The case of isotropic damage that takes an isotropic undamaged material to an isotropic
damaged state is characterized by two independent damage parameters[ Damage can proceed
along many possible paths within a limited region of the space of those damage parameters that
we have called the damage domain[ The actual path and the rules governing the evolution of
damage are given by the material constitutive equations including damage e}ects[

In this work we have given the appropriate equations for an elastoplastic material with a speci_c
type of damage behavior based on an assumed damage potential[ These governing equations have
as their unifying base the thermodynamics of irreversible processes[

The present work\ however\ has not treated the signi_cant question of unequal responses in
tension and compression[ This may have special relevance in cases of damage related to micro!
cracking and will need to be included in subsequent extension of this work[
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